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Discontinuity Induced Bifurcations of Nonhyperbolic Cycles
in Nonsmooth Systems∗

Alessandro Colombo† ‡ and Fabio Dercole†

Abstract. We analyze three codimension-two bifurcations occurring in nonsmooth systems, when a nonhyper-
bolic cycle (fold, flip, and Neimark–Sacker cases, in both continuous and discrete time) interacts with
one of the discontinuity boundaries characterizing the system’s dynamics. Rather than aiming at a
complete unfolding of the three cases, which would require specific assumptions on both the class
of nonsmooth system and the geometry of the involved boundary, we concentrate on the geomet-
ric features that are common to all scenarios. We show that, at a generic intersection between the
smooth and discontinuity induced bifurcation curves, a third curve generically emanates tangentially
to the former. This is the discontinuity induced bifurcation curve of the secondary invariant set (the
other cycle, the double-period cycle, or the torus, respectively) involved in the smooth bifurcation.
The result can be explained intuitively, but its validity is proved here rigorously under very general
conditions. Three examples from different fields of science and engineering are also reported.
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1. Introduction. This article deals with the analysis of three particular codimension-two
bifurcations in nonsmooth systems. Broadly speaking, nonsmooth systems are continuous- or
discrete-time dynamical systems featuring some kind of discontinuity in the right-hand side
of their governing equations whenever the system’s state reaches a discontinuity boundary.
More specifically, nonsmooth systems include several classes, e.g., piecewise smooth [11, 9],
impacting [2], and hybrid [1, 17] systems, which have largely been used in recent decades as
models in various fields of science and engineering (see references above and therein).

While methods of numerical continuation allow us to easily detect and trace bifurcation
curves in two-parameter planes, understanding the geometry of bifurcation curves around
codimension-two points is a key to the construction of complex bifurcation diagrams. In
the domain of smooth dynamical systems, the unfolding of the most common codimension-
two points is well known (see, e.g., [15]), and this knowledge is exploited in continuation
software for the automatic switching among bifurcation branches at these points (see, e.g.,
[8, 19]). The same cannot be said for nonsmooth systems, where, though efficient numerical
tools for bifurcation analysis are finally starting to appear [6, 23], results are still mostly
limited to codimension-one cases. A reason for this shortcoming can be found in the fact that
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nonsmooth systems exhibit, along with the standard bifurcations of smooth systems, a great
number of completely new bifurcations, called discontinuity induced bifurcations, that involve
the interaction of the system’s invariant sets with the discontinuity boundaries. Since the
characteristics of these bifurcations depend critically on both the class of nonsmooth system
and the geometry of the involved boundaries, the number of possible scenarios is huge, and
at the moment, truly general results are scarce. It goes without saying that codimension-two
cases involving simultaneous smooth and discontinuity induced bifurcations, named “type II”
in [14], are even more numerous and less understood.

In this article we analyze type II bifurcations of periodic orbits (limit cycles), that is, bifur-
cations involving a periodic orbit (from now on called the bifurcating cycle) that collides with
a discontinuity boundary while being at the same time nonhyperbolic. Rather than aiming at
a complete unfolding with reference to a particular class of nonsmooth systems, we concen-
trate on finding those geometric features that are common to all classes: this is accomplished
by abstracting our analysis from the nature of the involved boundary. As a consequence, our
results are incomplete, because they focus on the geometry of bifurcation curves only around
the codimension-two point; on the other hand, they apply more in general—a feature that
should be welcome in a field where peculiarity seems to be the rule.

In particular, we show that three codimension-one bifurcation curves generically emanate
from a type II point in a two-parameter plane. One is the smooth bifurcation curve (fold,
flip, or Neimark–Sacker (NS)), while the other two are the discontinuity induced bifurcations
of the bifurcating cycle and of the secondary invariant set involved in the smooth bifurcation
(the other cycle, the double-period cycle, or the torus, respectively). Then we show that,
depending on the bifurcation, one or both of these curves are tangent to the smooth bifurcation
curve. Indeed, in the flip and NS cases, the bifurcating cycle departs from the image of the
nonhyperbolic cycle, left frozen in state space, at a linear rate with respect to the bifurcation
parameter, whereas the distance between the period-two cycle or the torus and such an image
goes as the square root of the parameter perturbation from the bifurcation. As a consequence,
locally to the codimension-two point, the perturbation required by the secondary invariant set
to collide with the discontinuity boundary is quadratic with respect to that required by the
bifurcating cycle. Similarly, in the fold case, the rate at which both cycles approach the image
of the nonhyperbolic cycle is proportional to the square root of the parameter perturbation,
so that the discontinuity induced bifurcation curves are both quadratically tangent to the fold
curve. These rather intuitive results have been observed in many examples and proved for
some specific classes of discontinuous systems (e.g., in [5, 14, 20, 24, 26, 21, 22]). The aim of
this paper is to provide formal support to the above geometric arguments and to prove their
validity once and for all under very general conditions.

The ensuing exposition is set into the framework of grazing bifurcations in continuous
time, where the discontinuity boundary is smooth, locally to the point of contact with the
bifurcating cycle, and the contact occurs tangentially. This allows us to keep the terminology
as coherent as possible, especially in the lack of a uniform terminology across all classes of
nonsmooth systems. Nonetheless, the reader will realize that our exposition is general and
applies to any discontinuity induced bifurcation involving a nonhyperbolic cycle in continuous
time or a nonhyperbolic fixed point in discrete time. In fact, our analysis is based on the
reduction of the nonsmooth flow to a map which is defined and smooth on one side of a
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Figure 1. A generic (hyperbolic) limit cycle γ of the nonsmooth flow Φ. For some α near α = 0, the cycle
passes close to, but does not touch, the discontinuity boundary D, so that the resulting Poincaré map on P is
defined, locally to z̄, only on one side of the discontinuity boundary H. The boundary H divides P into two
regions, respectively composed of points z from which the orbit of Φ does and does not touch D.

boundary, while we do not describe the behavior of the map on the other side. The rest of the
analysis is based on the obtained map, as if the problem were originally set in discrete time.
Thus, in practice, we do not make any assumption on the class of nonsmooth systems and on
the geometry of the discontinuity boundary.

We begin by stating the problem, introducing the basic notation, and outlining the steps
that we follow in the main proofs (section 2); then we proceed with the detailed analysis of the
three generic grazing bifurcations of nonhyperbolic cycles: the grazing-fold, the grazing-flip,
and the grazing-NS (sections 3–5 and the appendices). Once cast in discrete time, grazing
bifurcations are more appropriately called border collisions, and this is the name we use in
this part of the paper. Then we present three specific applications (section 6) and conclude
with some future directions.

2. The framework of analysis. We consider a nonsmooth autonomous flow x(t) =
Φ(x(0), t, α) ∈ Rn+1 depending on parameters α ∈ R2. Namely, the right-hand side of
the system’s ODEs,

(2.1) ẋ(t) =
∂

∂τ
Φ(x(t), τ, α)

∣∣∣∣
τ=0

= Φt(x(t), 0, α)

(here and in what follows, variables and parameters as subscripts denote differentiation), is
generically smooth but characterized by zero- or higher-order discontinuities across some dis-
continuity boundaries Di, defined as the zero set of suitable smooth functions Di(x, α). In
particular, we can distinguish three types of discontinuity boundaries (see Figure 1): bound-
aries across which the right-hand side of (2.1) is nonsmooth but continuous, so that orbits
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always cross the boundary (DC in the figure); boundaries across which the right-hand side of
(2.1) is discontinuous, so that sliding motions are possible (DS); and boundaries where the
right-hand side of (2.1) is formally characterized by impulsive components, which define an
instantaneous state transition (or jump) whenever orbits reach the boundary (DI).

Forward solutions of system (2.1) are composed of smooth segments, each corresponding
to a smooth orbit terminating at a discontinuity boundary, or to a sliding motion. Smooth
segments are directly connected at crossing and sliding boundaries, while they are connected
through state jumps at impacting boundaries. Let γ be a periodic orbit of system (2.1). In
Figure 1, γ is composed of four segments, three smooth (solid) orbits and one sliding motion
(thick orbit), and is characterized by a single state jump (thick dashed connection).

Suppose that, when α = 0, the cycle γ grazes (touches tangentially) a discontinuity
boundary D, and no other degeneracies occur on DC , DI , and DS . At the same time, suppose
that γ is nonhyperbolic at α = 0. (More precisely, the multipliers are not defined at α = 0, but
the smooth bifurcation curve is a path to α = 0 on which one real or two complex conjugate
simple multipliers lie on the unit circle.) Introduce a Poincaré section P along one of the
segments of γ, say, e.g., the segment touching D so that the flow reaches D after P for α = 0.
Also introduce a coordinate z ∈ Rn on P such that the intersection z̄ of γ with P lies at z = 0
for α = 0. Then, locally to (z, α) = (0, 0), the flow Φ induces a Poincaré map,

(2.2) z �→ F (z, α).

(Note that the map may not be invertible, e.g., in the presence of sliding motions.) Since we
do not discuss the type of boundary D, we limit the definition of F to the values of (z, α) in a
neighborhood of (0, 0) for which the orbit originating at z does not touch D. This introduces
an (n − 1)-dimensional discontinuity boundary H on the Poincaré section P such that F is
defined and smooth on one side of H. In particular, let

D = {x : D(x, α) = 0}, H = {z : H(z, α) = 0},

and assume, without loss of generality, that the flow Φ touches D tangentially while locally
remaining on the side D(x, α) < 0, and that F (z, α) is defined for H(z, α) < 0. Then, the
function H can be constructed as follows (see again Figure 1). Define the n-dimensional
smooth manifold T of the points where the flow is tangent to the level sets of function D:

T = {x : T (x, α) := 〈Φt(x, 0, α),Dx(x, α)〉 = 0}.

(Vector Dx(x, α) ∈ Rn+1 is orthogonal to the level sets of D at (x, α) and 〈·, ·〉 is the standard
scalar product in Rn+1.) As shown in Figure 1, the (n− 1)-dimensional intersection between
D and T is transformed, backward in time by the flow, into the discontinuity boundary H.
Thus, H(z, α) can be defined as the value D(x, α) at the point x at which the flow first reaches
T (forward in time) from the initial condition corresponding to z on P.

We can now abandon the continuous-time framework and focus on map (2.2). For some
α in a neighborhood of α = 0, the map is characterized by a fixed point z̄, with H(z̄, α) < 0,
and, for α = 0, the fixed point is nonhyperbolic and lies at the origin z = 0 and on the discon-
tinuity boundary H. We investigate the bifurcation curves rooted at α = 0 in the parameter
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plane (α1, α2), by considering separately the three generic cases, namely (I) fold (one simple
eigenvalue equal to 1, section 3), (II) flip (one simple eigenvalue equal to −1, section 4), and
(III) NS (two simple complex conjugate eigenvalues on the unit circle, section 5).

In each case, we proceed as follows. Locally to (z, α) = (0, 0), we consider the restriction
of map (2.2) to a parameter-dependent center manifold Zc. Let u ∈ Rnc represent coordinates
on Zc, nc = 1 in the fold and flip cases, nc = 2 in the NS case, with u = u(z, α) for each
z ∈ Zc and α in a neighborhood of (z, α) = (0, 0), u(0, 0) = 0, and let z = z(u, α) denote the
inverse transformation. Restricted to the center manifold, map (2.2) reads

(2.3) u �→ f(u, α) := u(F (z(u, α), α), α),

and the discontinuity boundary H is given by the zero-set of the function

(2.4) h(u, α) := H(z(u, α), α).

We assume that the three following conditions hold:
(i) Map (2.3) satisfies, at α = 0, all genericity conditions of the corresponding smooth

bifurcation (see, e.g., [15]).
(ii) At α = 0, the center manifold Zc transversely intersects the discontinuity boundary H

at z = 0. (By continuity the transversality persists near (z, α) = (0, 0); see Figure 1.)
Under this condition, the dynamics of map (2.2) near (z, α) = (0, 0) is captured by that
on the center manifold. In the coordinate u along the center manifold the condition
becomes hu(0, 0) �= 0.

(iii) Changing α along the smooth bifurcation curve, the nonhyperbolic fixed point crosses
the discontinuity boundary transversely. This condition ensures that the smooth bi-
furcation curve intersects the border collision curves in a generic way.

As a first step, we reduce map (2.3) to a normal form (NF) (the fold, flip, and NS normal forms)
through a locally invertible change of variable and parameter, say, v = v(u, α), β = β(α),
where v(0, 0) = 0, β(0) = 0, and u = u(v, β) and α = α(β) denote the inverse transformation.
Second, we find the expression of the discontinuity boundary (2.4) in the new variables and
parameters, i.e.,

(2.5) {v : hNF(v, β) := h(u(v, β), α(β)) = 0}.

Finally, we analyze the interaction of the NF map

v �→ fNF(v, β) := v(f(u(v, β), α(β)), α(β))

with the discontinuity boundary (2.5), and we find local asymptotics for the bifurcation curves
emanating from α = 0 in terms of (α1, α2)-expansions.

The details of the NF reduction are reported in Appendices A.1, B.1, and C.1, while
the technicalities on step two are reported in Appendices A.2, B.2, and C.2. The specific
analytical form taken by condition (iii) in the fold, flip, and NS cases is, respectively, derived in
Appendices A.3, B.3, and C.3 in terms of both the original coordinates z and the coordinates u
in the center manifold. Finally, some details on step three for the NS case are relegated
to Appendix C.4. For simplicity of notation, in the following the 0 superscript stands for
evaluation at (u, α) = (0, 0) or (v, β) = (0, 0).
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3. Case I: Border-fold bifurcation. Let the dynamics in the center manifold Zc be de-
scribed by the one-dimensional system

(3.1) u �→ f(u, α), u ∈ R1,

with f0 = 0 (fixed point condition) and f0
u = 1 (fold condition). Under condition (i), map

(3.1) can be reduced to NF (first step; see Appendix A.1) with invertible changes of variable
and parameter v = v(u, α), β = β(α), becoming

(3.2) v �→ β1 + v + sv2 + O(v3),

where s = sign(f0
uu). In these variables, the fold curve has equation β1 = 0 in the plane

(β1, β2), and the corresponding nonhyperbolic fixed point is located at v = 0.

We now turn our attention to the discontinuity boundary (2.5) (second step; see Appen-
dix A.2). Condition (ii), ensuring transversal intersection of the center manifold Zc and the
discontinuity boundary H, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2)

such that the intersection of H with Zc is located at v = σ(β). Then by condition (iii) (see
Appendix A.3 for the analytical expression) we know that, moving along the fold curve, that
is, along the β2-axis, the fixed point at v = 0 crosses H at β2 = 0. As a consequence, we have
σ0
β2

�= 0.

We are now ready to find the equation of the border collisions in the plane (β1, β2) (third
step). The two fixed points of the NF map (3.2) are located at v̄±(β) = ±√−sβ1 + O(‖β‖2)
(v̄− being stable and v̄+ unstable for s = 1, and vice versa for s = −1) and lie on the
discontinuity boundary (2.5) along the curves

(3.3) ±
√

−sβ1 = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2).

Since σ0
β2

�= 0, (3.3) for small ‖β‖ becomes

(3.4) ±
√
−sβ1 
 σ0

β2
β2

and gives the asymptotics, locally to β = 0, of the two border-collision bifurcation curves
involving the fixed points v̄±. The invertible parameter change β = β(α) easily provides the
asymptotics in the original α parameters.

Depending upon the sign of s in the NF map (3.2), of σ0
β2

in (3.4), and of h0
u in (ii), there

are eight generic cases, two of which are reported in Figure 2. The other six can be reduced to
these two by suitable parameter changes. In fact, the four cases with σ0

β2
< 0 are symmetric

with respect to the β1-axis to the corresponding cases with σ0
β2

> 0, while the four cases with

h0
u < 0 can be reduced to cases with h0

u > 0 by changing the sign of s and rotating the figure.
Note that only half of the β2-axis can be said to belong to the fold curve (LP), since along the
other half the two fixed points v̄± collide at v = 0 on the undescribed side of the discontinuity
boundary (2.5), i.e., hNF(0, β) > 0.
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Figure 2. Border-fold bifurcation. Bifurcation curves: LP, fold (limit point, red); BC s, border collision of
the stable fixed point (v̄−, left; v̄+, right) of map (3.2) (green); BC u, border collision of the unstable fixed point
(v̄+, left; v̄−, right) of map (3.2) (blue). Region labels: 0, no fixed point in V −(β) := {v : hNF(v, β) < 0}; 1,
v̄− is the only fixed point in V −(β); 2, both fixed points v̄± lie in V −(β).

4. Case II: Border-flip bifurcation. Let the dynamics in the center manifold Zc be
described by the one-dimensional system

(4.1) u �→ f(u, α), u ∈ R1,

with f0 = 0 (fixed point condition) and f0
u = −1 (flip condition). Through a parameter-

dependent translation, we can ensure that f(0, α) = 0, i.e., that u = 0 is a fixed point for all α
in a neighborhood of α = 0. Under condition (i), map (4.1) can be reduced to NF (first step;
see Appendix B.1) with invertible changes of variable and parameter v = v(u, α), β = β(α),
becoming

(4.2) v �→ −(1 + β1)v + sv3 + O(v4),

with s = sign((1/4)(f0
uu)

2 + (1/6)f0
uuu). In these variables, the flip curve has equation β1 = 0

in the plane (β1, β2), and the corresponding nonhyperbolic fixed point is located at v = 0.
Moreover, parameters can be chosen so that the border collision of the fixed point in the origin
has equation β2 = 0.

We now turn our attention to the discontinuity boundary (2.5) (second step; see Appen-
dix B.2). Condition (ii), ensuring transversal intersection of the center manifold Zc and the
discontinuity boundary H, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2)

such that the intersection of H with Zc is located at v = σ(β). Moreover, thanks to the
parameter choice in (4.2), σ0

β1
= 0 since the fixed point v = 0 lies on H when β2 = 0. Then by

condition (iii) (see Appendix B.3 for the analytical expression) we know that, moving along
the flip curve, that is, along the β2-axis, the fixed point at v = 0 crosses H at β2 = 0. As a
consequence, we have σ0

β2
�= 0.
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Figure 3. Border-flip bifurcation. Bifurcation curves: PD, flip (period doubling, red); BC s,u
1 , border

collision of the fixed point v = 0 (stable and unstable branches, blue); BC s,u
2 , border collision of the stable or

unstable period-two cycle. Region labels: 0, no fixed point or period-two cycle in V −(β) := {v : hNF(v, β) < 0};
1, v = 0 is a fixed point in V −(β) and there is no period-two cycle, or it does not lie entirely in V −(β); 2, the
fixed point v = 0 coexists in V −(β) with the period-two cycle.

We are now ready to find the equation of the border collisions in the plane (β1, β2) (third
step). Near (v, β1) = (0, 0) the NF map (4.2) iterated twice has one fixed point in v = 0 (which
is also a fixed point of map (4.2)) and two others in v̄±(β) = ±√

sβ1 + O(‖β‖2) (period-two
cycle). In particular, v̄± lie on discontinuity boundary (2.5) along the curves

(4.3) ±
√

sβ1 = σ0
β2

β2 + O(‖β‖2).
Since σ0

β2
�= 0, (4.3) for small ‖β‖ becomes

(4.4) ±
√

sβ1 
 σ0
β2

β2

and gives the asymptotics, locally to β = 0, of the border-collision bifurcation curves involving
the two points v̄± of the period-two cycle. The invertible parameter change β = β(α) provides
the asymptotics in the original α parameters.

Depending upon the sign of s in the NF map (4.2), of σ0
β2

in (4.4), and of h0
u in (ii), there

are eight generic cases. However, again, only two cases are relevant (see Figure 3), because
all others can be reduced to these two by suitable parameter changes. Here, both the four
cases with σ0

β2
< 0 and those with h0

u < 0 are symmetric with respect to the β1-axis to the

corresponding cases with σ0
β2

> 0 or h0
u > 0. Also note that only half of the β2-axis can be

said to belong to the flip curve PD, since along the other half the fixed point v = 0 lies on the
undescribed side of the discontinuity boundary (2.5); i.e., hNF(0, β) > 0. Similarly, only one
of the two branches in (4.4) constitutes the border-collision curve involving the period-two
cycle (stable, BCs

2; unstable, BC
u
2), since along the other branch hNF(v̄±, β) ≥ 0.

5. Case III: Border-NS bifurcation. Let the dynamics in the center manifold Zc be
described by the two-dimensional system

(5.1) u �→ f(u, α), u ∈ R2,
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with f0 = 0 (fixed point condition) and with eigenvalues λ0 and λ̄0 (the overbar stands for
complex conjugation) of the 2× 2 Jacobian f0

u given by

λ(α) = (1 + g(α))eiθ(α),

with g0 = 0 (NS condition). As in the flip case, assume that f(0, α) = 0 for all α in a
neighborhood of α = 0. Under condition (i), map (5.1) can be reduced to NF in polar
coordinates (first step; see Appendix C.1) with invertible changes of variable and parameter
ρ = ρ(u, α), ϕ = ϕ(u, α), β = β(α), becoming

ρ �→ ρ(1 + β1 + a(β)ρ2) + ρ4R(ρ, ϕ, β),(5.2a)

ϕ �→ ϕ + θ(α(β)) + ρ2Q(ρ, ϕ, β),(5.2b)

where a0 �= 0. In these variables, the NS curve has equation β1 = 0 in the plane (β1, β2),
and the corresponding nonhyperbolic fixed point is located at v = 0 (with v1 = Re(ρeiϕ) and
v2 = Im(ρeiϕ)). Moreover, parameters can be chosen so that the border collision of the fixed
point in the origin has equation β2 = 0.

We now turn our attention to the discontinuity boundary (2.5) (second step; see Appen-
dix C.2). Condition (ii), ensuring transversal intersection of the center manifold Zc and the
discontinuity boundary H, implies local existence and uniqueness of a smooth function

σ(β) = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2),
measuring the distance between the origin and the boundary, with positive/negative values
if hNF(0, β) is negative/positive, in order to make σ(β) differentiable at β = 0. Moreover,
thanks to the parameter choice in (5.2), σ0

β1
= 0 since the fixed point v = 0 lies on H when

β2 = 0. Then by condition (iii) (see Appendix C.3 for the analytical expression) we know
that, moving along the NS curve, that is, along the β2-axis, the fixed point at v = 0 crosses H
transversely at β2 = 0. As a consequence, we have σ0

β2
�= 0.

We are now ready to find the equation of the border collisions in the plane (β1, β2) (third
step). Near β = 0, the NF map (5.2) has a fixed point in ρ = 0 and a closed invariant curve
that is contained in the annular region

(5.3)

{
(ρ, ϕ) :

√
− β1

a(β)
(1− β

γ−1/2
1 ) ≤ ρ ≤

√
− β1

a(β)
(1 + β

γ−1/2
1 ), ϕ ∈ [0, 2π]

}
,

1

2
< γ < 1

(see Appendix C.4). The two circles delimiting the annular region (5.3) touch the discontinuity
boundary along the curves

(5.4)

√
− β1

a(β)
(1± β

γ−1/2
1 ) = σ0

β2
β2 + O(‖β‖2).

Since σ0
β2

�= 0, (5.4) for small ‖β‖ becomes

(5.5)

√
−β1

a0

 σ0

β2
β2

and gives a unique asymptotic, locally to β = 0, for the grazing bifurcation curves of both
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Figure 4. Border-NS bifurcation. Bifurcation curves: NS, Neimark–Sacker (red); BC s,u, border collision
of the fixed point v = 0 (stable and unstable branches, blue); GRs,u, grazing of the stable or unstable torus
(green). Region labels: 0, no fixed point or invariant curve in V −(β) := {v : hNF(v, β) < 0}; 1, v = 0 is a fixed
point in V −(β) and there is no invariant curve, or it does not lie entirely in V −(β); 2, both the fixed point
v = 0 and the invariant curve lie in V −(β).

circles. The same asymptotic therefore holds for the grazing bifurcation involving the invariant
curve. (The uniqueness of the bifurcation curve is granted by the elliptical shape of the
invariant curve near β = 0.) Again, the invertible parameter change β = β(α) provides the
asymptotics in the original α parameters.

Depending upon the sign of a0 in the NF map (5.2) and of σ0
β2

in (5.5), there are four
generic cases. However, again, only two cases are relevant (see Figure 4), because those with
σ0
β2

< 0 are symmetric with respect to the β1-axis to the cases with σ0
β2

> 0. Also note that
only half of the β2-axis can be said to belong to the NS curve, since along the other half
the fixed point v = 0 lies on the undescribed side of the discontinuity boundary (2.5), i.e.,
hNF(0, β) > 0. Similarly, only half of the parabola in (5.5) constitutes the grazing bifurcation
curve involving the invariant curve (stable, GRs; unstable, GRu), since along the other half
the invariant curve is composed of points v with hNF(v, β) ≥ 0.

6. Examples. We now present three specific examples, one for each of the three codimension-
two bifurcations analyzed in the previous sections. The three examples deal with different
classes of nonsmooth systems (an impacting, a hybrid, and a piecewise smooth system) and
describe interesting applications in different fields of science and engineering (ecology, social
sciences, and mechanics).

An impacting model of forest fires. For an example of border-fold bifurcation, we con-
sider the forest fire impacting model presented in [7, 18]. The model describes the vegetational
growth with the following two (smooth) ODEs:

Ḃ = rBB

(
1− B

KB

)
− αBT,

Ṫ = rTT

(
1− T

KT

)
,
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Figure 5. Example of border-fold bifurcation. Bifurcation curves: fold (red); border collision of the period-
one stable cycle (blue); border collision of the period-one unstable cycle (green). Region labels as in Figure 2.

one for the surface layer (bush, B) and one for the upper layer (trees, T ). Fire episodes are
represented by instantaneous events (impacts), which occur when the biomasses (B,T ) of the
two layers reach one of three specified impacting boundaries: a bush ignition threshold ρBKB

triggering bush-only fires that map the bush biomass to λBρBKB , 0 < λB , ρB < 1; a tree
ignition threshold ρTKT triggering trees-only fires that map the trees biomass to λTρTKT ,
0 < λT , ρT < 1; and the segment connecting points (σBKB , ρTKT ) and (ρBKB , σTKT ),
0 < σB < ρB , 0 < σT < ρT , triggering mixed fires with postfire conditions suitably assigned
as a function of prefire conditions (see [18] for more details).

For the parameter setting r1 = 0.375, r2 = 0.0625, α = 0.43, KB = KT = 1, ρB = 0.85,
ρT = 0.93, λB = 0.03, λT = 0.01, σB = 0.61, σT = 0.3 (corresponding to Mediterranean
forests), the system is characterized by a globally stable period-one cycle composed of a growth
orbit and a mixed fire. Numerical continuation (by means of Auto-07p [10]) of the cycle in
the parameter plane (ρB , ρT ) identifies two (codimension-one) bifurcations: a fold (red curve
in Figure 5) and a grazing of the growth orbit with the bush ignition threshold (blue curve).
The two curves merge together at the border-fold bifurcation (black) point and, as predicted
by the analysis carried out in section 3, the grazing bifurcation of the unstable cycle involved
in the fold (green curve) emanates tangentially to the fold curve from the codimension-two
bifurcation point.

A hybrid model of two-party democracies. For an example of border-flip bifurcation, we
consider the hybrid model presented in [3] for describing the dynamics of two-party democra-
cies. The model describes the evolution of the size of two lobbies (of sizes LD and LR), one
associated with each party (parties D and R, respectively), and assumes that the individuals
belonging to the lobby of the party in power erode the welfare (W ) at a rate proportional
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to the size of the lobby; a lobby can grow only as long as its party is in power, and decays
otherwise; a small fraction of the lobbyists not in power defect and switch to the other lobby;
elections are held once every T years, and people vote for the party that has the less damaging
lobby at the time of the elections. Altogether, the dynamics is captured by two sets of ODEs,
namely,

Ẇ = r(1− W − aDLD)W,

L̇D = (eDaDW − dD)LD + kRLR,

L̇R = (−dR − kR)LR,

when the D-party is in power, and

Ẇ = r(1− W − aRLR)W,

L̇D = (−dD − kD)LD,

L̇R = (eRaRW − dR)LR + kDLD,

when the R-party is in power. Here, r is the intrinsic growth rate of the welfare, a represents
the aggressiveness of a lobby, e is the recruitment coefficient of a lobby, and d and k are,
respectively, the rate at which individuals abandon the lobbies or defect. In the region of the
state space where aDLD < aRLR (aDLD > aRLR) the D-lobby (R-lobby) is less damaging
and thus wins the elections. The condition aDLD = aRLR therefore defines the discontinuity
boundary (see [3] for more details).

In the (aD, T ) plane, with parameters aR = 1, r = 0.2, eD = eR = 6, dD = dR = 1.8,
kD = kR = 0.06, the system has a very complex bifurcation diagram (see, for example,
Figure 1 in [3]). In particular, near aD = 0.38, T = 3.2, a flip (red curve in Figure 6) and a
border collision (blue curve) of a period-2T cycle meet at the border-flip (black) point and,
as predicted by the analysis carried out in section 4, a border collision of the period-4T cycle
(green curve) emanates from the codimension-two point tangentially to the flip curve.

A piecewise smooth model of railway wheelset dynamics. For an example of border-
NS bifurcation, we consider a two-degrees-of-freedom piecewise smooth model of a suspended
railway wheelset with dry friction dampers, subject to a sinusoidal disturbance representing
the deformations of the track. The model is based on that presented in [25, 13], where the
track deformation was not taken into account, and its analysis will be published elsewhere.
Since a detailed explanation of the equations and parameters goes beyond the scope of this
paper, here we only report the equations and describe a few key parameters (see [13] and [25]
for the details). The model consists of the following piecewise smooth equations:

ẋ1 = x̃2,

ẋ2 =
1

m
(−2Fx − 2Ksx̃1 − sign(x2)μ),

ẋ3 = x4,

ẋ4 =
1

I
(−2AFy),
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Figure 6. Example of border-flip bifurcation. Bifurcation curves: flip (red); border collision of the period-
one cycle (blue); border collision of the period-two cycle (green). Region labels as in Figure 3.

where

x̃1 = x1 + a sin(ωt), x̃2 = x2 + aω cos(ωt),

μ = (μd(1− sech(αx̃2)) + μs sech(αx̃2)),

Fx =
ξxFr

Ψξr
, Fy =

ξyFr

Φξr
, Fr =

{
ξrC

(
1− Cξr

3μt
+ C2ξ2r

27μ2
t

)
if Cξr < 3μt,

μt otherwise,

ξx =
x̃2

V
− x3, ξy =

Ax4

V
+

λx̃1

r0
, ξr =

√(
ξx
Ψ

)2

+

(
ξy
Φ

)2

.

Here ω = 2πV/l, a and l are the amplitude and wavelength of the sinusoidal disturbance, V is
the speed of the wheelset, and λ measures the conicity of the wheels. The system’s state space
is therefore partitioned into four regions, depending on the signs of x2 and of Cξr − 3μt, so
that x2 = 0 and Cξr = 3μt define two discontinuity boundaries.

The system’s dynamics was studied, with TC-HAT [23], in the (V, λ) plane, with the
following values of the parameters: m = 1022, Ks = 1e6, I = 678, A = 0.75, a = 0.001,
μd = 1000, α = 50, μs = 1200, Ψ = 0.54219, Φ = 0.60252, C = 6.5630e6, μt = 1e5,
r0 = 0.4572, l = 10. For large values of V , a grazing of a stable cycle with the boundary
x2 = 0 and an NS take place (blue and red in Figure 7), and meet at the border-NS (black)
point. Then, by systematically evaluating 1000 iterations (after transient) of the Poincaré
map of the torus on a suitable cross section, and by continuing the line on which the obtained
torus image grazes the discontinuity boundary induced on the cross section, we were able to
trace an approximation of the grazing curve of the torus (green in Figure 7). More rigorous
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Figure 7. Example of border-NS bifurcation. Bifurcation curves: NS (red); border collision of the period-one
cycle (blue); border collision of the torus (green). Region labels as in Figure 4.

methods, based, for example, on discretization of the invariant curve (see, e.g., [12, 4]), could
be used to obtain a more precise estimate of the quadratic coefficient. This lies, however,
beyond the scope of this paper. As predicted by the analysis carried out in section 5, the
curve emanates from the codimension-two point tangentially to the NS curve.

7. Concluding remarks. We have analyzed the geometry of bifurcation curves around
three codimension-two bifurcations in nonsmooth systems, namely the border-fold, the border-
flip, and the border-Neimark–Sacker. Rather than aiming at the complete unfolding of the
dynamics of a particular class of nonsmooth systems (e.g., piecewise smooth, impacting, or hy-
brid) dealing with a particular geometry of the involved discontinuity boundary (e.g., smooth
or corner), we have focused on those results which are general to all scenarios. Our approach
applies to continuous-time as well as discrete-time systems, and basically consists of the anal-
ysis of a discrete-time (Poincaré) map defined on only one side of a boundary in its state
space. Explicit genericity conditions are listed and explained for each codimension-two case.

Of course, the weakness of this approach is that it cannot provide the complete unfolding
of the bifurcation, but its power resides in its generality: as shown in the three examples
that we have reported, it applies to a very broad class of nonsmooth systems, and it may be
relevant in various fields of science and engineering.

The natural sequel of this work would certainly aim at more detailed results, and possibly
at the complete unfolding, of the codimension-two bifurcations analyzed here, with specific
reference to some smaller class of nonsmooth systems.

Appendix A. Border-fold bifurcation. In the case of the border-fold bifurcation, condi-
tions (i)–(iii) in section 2, expressed in the variable u of the center manifold, are summarized
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below:
(i.a) f0

uu �= 0,
(i.b) f0

α �= 0,
(ii) h0

u �= 0,
(iii) f0

uuh
0
α1

f0
α2

− h0
uf

0
uα1

f0
α2

�= f0
uuh

0
α2

f0
α1

− h0
uf

0
uα2

f0
α1
.

Note that (i.b) is redundant, since it is implied by (iii).

A.1. Step one. To reduce map (3.1) to normal form we follow [15], where, however, α ∈
R, while here α ∈ R2. The variable change v = v(u, α) is formally the same as in [15], while the
parameter change that we use is β = β(α) = |a(μ(α))|μ(α), μ1(α) = f0

0α1
α1+f0

0α2
α2+O(‖α‖2),

μ2(α) = −f0
0α2

α1+f0
0α1

α2+O(‖α‖2), a(μ) = f2(α(μ))+O(‖α(μ)‖), with a(0) = (1/2)f0
uu �= 0

because of (i.a). The inverse transformations have the following derivatives:

u0
v =

2

|f0
uu|

, u0
β2

= −δ0αα0
β2

, δ0α =
f0
uα

f0
uu

, α0
β2

=
2

|f0
uu|‖f0

α‖2
[
−f0

α2

f0
α1

]
.

A.2. Step two. Consider the discontinuity boundary (2.5). The variable and parameter
change v = v(u, α), β = β(α) is invertible near (u, α) = (0, 0), so that condition (ii) implies
that hNF

v (0, 0) = h0
uu

0
v �= 0, i.e., local existence and uniqueness, by the implicit function

theorem, of a smooth function

σ(β) = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2)

such that hNF(σβ, β) = 0 for small ‖β‖, so that the intersection of the discontinuity boundary
H with the center manifold Zc is located at v = σ(β).

We now prove, using condition (iii), that σ0
β2

�= 0. By differentiating both sides of

hNF(σ(β), β) = 0, i.e., of h(u(σ(β), β), α(β)) = 0, with respect to β2, taking into account
the derivatives in Appendix A.1, and evaluating at β = 0, we get

σ0
β2

= −
h0
uu

0
β2

+ h0
αα0

β2

h0
uu

0
v

=
1

h0
u‖f0

α‖2
((

h0
α1

− h0
uf

0
uα1

f0
uu

)
f0
α2

−
(

h0
α2

− h0
uf

0
uα2

f0
uu

)
f0
α1

)
.

Thanks to (i)–(iii), this ensures that σβ2 �= 0.

A.3. Genericity conditions (ii) and (iii). In the original coordinates z of map (2.2),
condition (ii) requires H0

zν
0 �= 0, where ν is the unit eigenvector of Fz associated with the

eigenvalue 1.
Consider now the fold curve defined by the system

F (z, α) − z = 0,

Fz(z, α)ν − ν = 0,

〈ν, ν〉 − 1 = 0.

(A.1)

In the space (z, ν, α), condition (iii) means that the tangent vector to the fold curve is not
tangent to the surface

(A.2) H(z, α) = 0
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at (z, α) = (0, 0). The tangent vector to the fold curve is the null vector of the Jacobian of
(A.1), so that, bordering such a Jacobian with the linearization of (A.2) and imposing that
the resulting square matrix is nonsingular at (z, ν, α) = (0, ν0, 0), i.e.,

det

⎛
⎜⎜⎝

F 0
z − I 0 F 0

α1
F 0
α2

F 0
zzν

0 F 0
z − I F 0

zα1
ν0 F 0

zα2
ν0

0 2(ν0)� 0 0
H0

z 0 H0
α1

H0
α2

⎞
⎟⎟⎠ �= 0,

we impose that the fold curve (A.1) intersects the surface (A.2) transversely, i.e., condition (iii).
This is nothing but requiring that the system (A.1), (A.2) be regular at (z, ν, α) = (0, ν0, 0).

Equation (A.1), restricted to the center manifold, becomes

f(u, α)− u = 0,

fu(u, α)− 1 = 0,

and, by the same reasoning, we obtain the condition

det

⎛
⎝ f0

u − 1 f0
α1

f0
α2

f0
uu f0

uα1
f0
uα2

h0
u h0

α1
h0
α2

⎞
⎠ �= 0,

which is equivalent to (iii) since f0
u = 1 (fold condition).

Appendix B. Border-flip bifurcation. In the case of the border-flip bifurcation, conditions
(i)–(iii) in section 2, expressed in the variable u of the center manifold, are summarized below:
(i.a) 1

2(f
0
uu)

2 + 1
3f

0
uuu �= 0,

(i.b) f0
uα �= 0,

(ii) h0
u �= 0,

(iii) f0
uα1

h0
α2

�= f0
uα2

h0
α1
.

Note that (i.b) is redundant, since it is implied by (iii).

B.1. Step one. Once again, to reduce map (4.1) to normal form, we use the same variable
change v = v(u, α) as in [15], while the parameter change is β1 = β1(α) = g(α1, α2), β2 =
β2(α) = h(0, α), with fu(0, α) = −(1 + g(α)). The inverse transformations have derivatives

u0
v =

1√
|c0|

, u0
β2

= 0, α0
β2

=
1

f0
uα1

h0
α2

− f0
uα2

h0
α1

[
−f0

uα2

f0
uα1

]
,

with c0 = (1/4)(f0
uu)

2 + (1/6)f0
uuu �= 0 because of (i.a).

B.2. Step two. Consider the discontinuity boundary (2.5). As in the border-fold case,
the variable and parameter change v = v(u, α), β = β(α) is invertible near (u, α) = (0, 0), so
that condition (ii) implies that hNF

v (0, 0) �= 0 and, by the implicit function theorem, that the
intersection of the discontinuity boundary H with the center manifold Zc is located at

v = σ(β) = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2),
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for some smooth function σ.
The parameter change obviously makes σ0

β1
= 0. We now prove that σ0

β2
�= 0. By

differentiating both sides of hNF(σ(β), β) = 0, i.e., of h(u(σ(β), β), α(β)) = 0, with respect to
β2, taking into account the derivatives in Appendix B.1, and evaluating at β2 = 0, we get

σ0
β2

= −
h0
uu

0
β2

+ h0
αα0

β2

h0
uu

0
v

= −
√

|c0|
h0
u

,

where condition (iii) ensures that h0
ααβ2 = 1. Thus (i)–(iii) imply that σ0

β2
�= 0.

B.3. Genericity conditions (ii) and (iii). In the original coordinates z of map (2.2),
condition (ii) requires H0

zν
0 �= 0, where ν is the unit eigenvector of Fz associated with the

eigenvalue −1.
Consider now the flip curve defined by the system

F (z, α) − z = 0,

Fz(z, α)ν + ν = 0,

〈ν, ν〉 − 1 = 0.

(B.1)

Similarly to the border-fold case, condition (iii) is equivalent to

det

⎛
⎜⎜⎝

F 0
z − I 0 F 0

α1
F 0
α2

F 0
zzν

0 F 0
z + I F 0

zα1
ν0 F 0

zα2
ν0

0 2ν� 0 0
H0

z 0 H0
α1

H0
α2

⎞
⎟⎟⎠ �= 0.

Equation (B.1), restricted to the center manifold, becomes

f(u, α)− u = 0,

fu(u, α) + 1 = 0.

Proceeding along the same lines, we obtain the condition

det

⎛
⎝ f0

u − 1 f0
α1

f0
α2

f0
uu f0

uα1
f0
uα2

h0
u h0

α1
h0
α2

⎞
⎠ �= 0,

which is equivalent to (iii) since f0
α = 0 (f(0, α) = 0 by assumption) and f0

u = −1 (flip
condition).

Appendix C. Border-NS bifurcation. In the case of the border-NS bifurcation, conditions
(i)–(iii) in section 2, expressed in the variables u of the center manifold, are summarized below:
(i.a) eikθ

0 �= 1 for k = 1, 2, 3, 4,
(i.b) the first Lyapunov coefficient of the NS normal form (a0; see later) is nonzero,
(i.c) g0α �= 0,
(ii) h0

u �= 0,
(iii) g0α1

h0
α2

�= g0α2
h0
α1
.

Note that (i.c) is redundant, since it is implied by (iii).
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Figure 8. (A) Local representation of the discontinuity boundary Σ (thick line) for small ‖v‖ and ‖β‖ as
a straight (dashed) line tangent to Σ in the point of minimum distance of Σ from the origin v = 0 (case with
σ(β) > 0). Since ‖β‖ is small, the direction ϕm of minimum distance is close to the direction ϕh of vector
hNF
v (0, 0). For ϕ ∈ (ϕ0, ϕ1) (shaded area), the discontinuity boundary Σ can be represented in coordinates

(r,ϕ). (B) The annular region (5.3) (shaded area) containing the invariant curve (thick closed line) of the
normal form map (5.2) and the (dashed) circle approached by the invariant curve as β → 0.

C.1. Step one. Once again, to reduce map (5.1) to normal form, we use the same variable
change w = w(u, α) (with w = v1 + iv2) as in [15], while the parameter change β = β(α)
is formally the same as in Appendix B.1. The inverse transformations u = u(w, w̄, β) and
α = α(β) have derivatives

uw(0, 0, 0) = q0, uw̄(0, 0, 0) = q̄0, uβ2(0, 0, 0) = 0, α0
β2

=
1

g0α1
h0
α2

− g0α2
h0
α1

[
−g0α2

g0α1

]
.

C.2. Step two. Denote by Σ the discontinuity boundary (2.5), where v ∈ R2. Again,
the variable and parameter change v = v(u, α), β = β(α) that we used is invertible near
(u, α) = (0, 0), so that condition (ii) implies that hNF

v (0, 0) = h0
uu

0
v �= 0, where now hNF

v (0, 0)
and h0

u are in R2 (row vectors) and u0
v is a 2 × 2 nonsingular matrix. Geometrically (see

Figure 8(A)), this means that for small ‖v‖ and ‖β‖ we can represent the discontinuity
boundary (2.5) as a straight line almost orthogonal to hNF

v (0, 0) and slightly displaced from
v = 0 in the direction of hNF

v (0, 0).

Let ϕh be the angle of vector hNF
v (0, 0) with respect to axis v1. Technically,

ϕh = arctan2π(h
NF
v1 (0, 0), hNF

v2 (0, 0)),

where arctan2π is the four-quadrant inverse tangent in [0, 2π]. For any ϕ in a neighborhood
of ϕh, introduce axis r passing from the origin v = 0 with direction ϕ, so that positive and
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negative values of r measure the distance from the origin along directions ϕ and ϕ±π, respec-
tively (see Figure 8(A)). Coordinates (r, ϕ) are like polar coordinates but allow differentiation
with respect to r at r = 0. We can therefore express the discontinuity boundary (2.5) as

Σ = {(r, ϕ) : hNF((r cos(ϕ), r sin(ϕ)), β) = 0},

where
d

dr
hNF((r cos(ϕh), r sin(ϕh)), 0)

∣∣∣∣
r=0

= hNF
v (0, 0)

[
cos(ϕh)
sin(ϕh)

]
�= 0

(recall that, by definition of ϕh, hNF
v (0, 0) is proportional to (cos(ϕh), sin(ϕh))), so that, by

the implicit function theorem, we can represent Σ explicitly as r = δ(ϕ, β), δ(ϕ, 0) = 0, for
some smooth function δ defined for ϕ in an open neighborhood (ϕ0, ϕ1) of ϕh.

Now, define ϕm(β) := argminϕ∈(ϕ0,ϕ1){|δ(ϕ, β)|} for β �= 0, and note that limβ→0 ϕm(β) =

ϕh, so that we can set ϕ0
m = ϕh. Then, the minimum distance of Σ from the origin v = 0 is

given by the absolute value of

σ(β) := δ(ϕm(β), β) = σ0
β1

β1 + σ0
β2

β2 + O(‖β‖2),

while its sign says whether the minimum is realized along the direction ϕm(β), if positive, or
ϕm(β) ± π, if negative. In the first case (see Figure 8(A)), v = 0 is a fixed point of the NF
map (5.2), since hNF(0, β) < 0, while v = 0 lies on the undescribed side of Σ in the second
case, i.e., hNF(0, β) > 0.

Similarly to the border-flip case, the parameter change implies that σ0
β1

= 0. We now show

that σ0
β2

�= 0. By differentiating both sides of hNF((δ(ϕ, β) cos(ϕ), δ(ϕ, β) sin(ϕ)), β) = 0, i.e.,
of

h(u(δ(ϕ, β)eiϕ , δ(ϕ, β)e−iϕ , β), α(β)) = 0,

with respect to β2, taking into account the derivatives in Appendix C.1, and evaluating at
β2 = 0, we get

δβ2(ϕ, 0) = −
h0
uuβ2(0, 0, 0) + h0

αα0
β2

h0
u(u

0
weiϕ + u0

w̄e−iϕ)
= − 1

2h0
uRe(q

0eiϕ)
,

which is well defined for ϕ = ϕh thanks to (ii). Indeed, u0
weiϕh + u0

w̄e−iϕh is nothing but
d/dr(u(reiϕh , re−iϕh , 0))|r=0 and thus gives the direction of u-perturbations from u = 0 cor-
responding to r-perturbations from r = 0 along the direction ϕh, so that, by definition of ϕh,
Re(q0eiϕh) is proportional to h0

u. Finally, we have

σ0
β2

= δϕ(ϕh, 0)ϕ
0
mβ2

+ δβ2(ϕh, 0) = δβ2(ϕh, 0)

(recall that δ(ϕ, 0) = 0 for all ϕ ∈ (ϕ0, ϕ1)), so that σβ2 �= 0 thanks to conditions (ii) and (iii)
(the latter of which is necessary to show that h0

αα0
β2

= 1).

Note that, in order to evaluate σ0
β2
, we need an expression for ϕh in terms of variables u.

For this we can write u as a function of (v, β), i.e.,

u = u(v, β) = u(v1 + iv2, v1 − iv2, β)
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(u must be read as a function of (w, w̄, β) on the right-most side), so that

u0
v1 = uw(0, 0, 0) + uw̄(0, 0, 0) = 2Re(q0),

u0
v2 = uw(0, 0, 0)i − uw̄(0, 0, 0)i = −2 Im(q0),

and

ϕh = arctan2π
(
h0
uu

0
v1 , h

0
uu

0
v2

)
= arctan2π

(
h0
uRe(q

0),−h0
u Im(q0)

)
.

C.3. Genericity conditions (ii) and (iii). Condition (ii) requires H0
z

(
Re(nu0), Im(ν0)

)
�=

0, where ν is the complex unit eigenvector of Fz associated with the eigenvalue (1 + g)eiθ.

The NS curve is described by the system

F (z, α) − z = 0,

g(α) = 0,
(C.1)

where, for any given α, g(α) ∈ R is obtained by solving the system

Fz(0, α)ν − (1 + g)eiθν = 0,

〈ν, ν〉 − 1 = 0,

Re(ν)� Im(ν) = 0

in the variables (g, θ, ν). In the space (z, α) condition (iii) means that the tangent vector to
the NS curve is not tangent to the surface

H(z, α) = 0

at (z, α) = (0, 0). As in the border-fold and -flip cases, condition (iii) is equivalent to

det

⎛
⎝ F 0

z − I F 0
α1

F 0
α2

g0z g0α1
g0α2

H0
z H0

α1
H0

α2

⎞
⎠ �= 0.

Equation (C.1), restricted to the center manifold, becomes

f(u, α) − u = 0,

g(α) = 0.

By the same reasoning we obtain the condition

det

⎛
⎝ f0

u − I f0
α1

f0
α2

g0u g0α1
g0α2

h0
u h0

α1
h0
α2

⎞
⎠ �= 0,

which is equivalent to (iii) since f0
α = 0 (f(0, α) = 0 by assumption) and f0

u − I is nonsingular
(condition (i.a) (k = 1)).
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C.4. Step three. In this section we show that near β = 0 the closed invariant curve of
the NF map (5.2) is contained in the parameter-dependent annular region (5.3). (We adapt
the material from [16, Chapter 5].)

Assume the supercritical case, i.e., a0 < 0, so that the invariant curve exists for β1 > 0
and is stable. The annular region shrinks around the circle of equation

(C.2) ρ =

√
− β1

a(β)
, ϕ ∈ [0, 2π],

with O(βγ
1 )-width (see Figure 8(B)), and map (5.2a) maps ρ into ρ + Δρ with Δρ = ρ(β1 +

a(β)ρ2 + ρ3R(ρ, ϕ, β)) and

Δρ

⎧⎨
⎩

≥ ρ(2β
γ+1/2
1 − β2γ

1 + O(β
3/2
1 )) if 0 ≤ ρ ≤

√
− β1

a(β)(1− β
γ−1/2
1 ),

≤ ρ(−2β
γ+1/2
1 − β2γ

1 + O(β
3/2
1 )) if ρ ≥

√
− β1

a(β) (1 + β
γ−1/2
1 ).

Thus the orbits of map (5.2) enter the annular region if γ < 1 (the term β
γ+1/2
1 dominates the

others and determines the sign of Δρ), so that with 1/2 < γ < 1 the stable invariant curve
remains in the annular region for small ‖β‖. Similarly, in the subcritical case, a0 > 0, the
invariant curve exists for β1 < 0 and is unstable, and the orbits of map (5.2) exit the annular
region if γ < 1. Again, with 1/2 < γ < 1, the invariant curve remains in the annular region
for small ‖β‖.
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